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LETTER TO THE EDITOR 
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Department of Natural Philosophy, The University, Glasgow G12 8QQ, UK 

Received 28 January 1974, in final form 14 February 1974 

Abstract. We present an exact projection technique based on the Lanczos algorithm 
for calculating eigenstates of an operator. The method is directly applicable to any 
intrinsic state expressible in terms of a sum of Slater determinants, does not depend 
on intrinsic symmetries, and can be used to project eigenstates of any one- or two- 
body operator. 

The projection of eigenstates of a physically important operator from an intrinsic 
state which is not itself an eigenstate of the operator is a familiar problem in nuclear 
physics. In the case of angular momentum projection from a deformed intrinsic 
state the favourite method is the integral technique of Hill and Wheeler (1953). This 
method requires complex numerical integration and is normally used only when the 
assumption of axial symmetry in the intrinsic state reduces the problem to integration 
over one variable. Even this simplification has some difficulties as care must be taken 
in the numerical integration procedure, especially for high spin states. An exact non- 
integral method exists and has been used with some success in the nuclear 2s-Id 
shell (Watt 1972). This method can be used with symmetry restrictions less severe 
than axial symmetry but requires considerable programming effort if a range of nuclei 
is to be investigated. 

We have developed a new projection technique (Morrison 1973) which has the 
advantage that it does not require any symmetries in the intrinsic state and is suitable 
for application to a range of nuclei without modification. The method is based on the 
Lanczos algorithm used in the Glasgow shell model program (Whitehead 1972). A 
full discussion is given in this reference and only the salient points will be mentioned 
here. The method is to diagonalize the operator whose eigenstates are required in a 
special basis prepared by the Lanczos method. This approach has also been used 
analytically by Warke (1974) to derive qualitative results, but for axial intrinsic states 
only. 

Let A be a real symmetric n x n matrix, and let vl be an arbitrary n x 1 vector nor- 
malized to 1. New vectors v2, v3, . . . are formed by iteration thus: 

AV, = &,-lv,-l +a,v, 
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At the ith step 2 1 , + ~  is the normalized remainder after orthogonalizing with respect 
to vi and The vectors e, form an orthonormal basis in which the matrix A takes 
on tri-diagonal form, which is important because it is easy to find the eigenvalues 
and eigenvectors of a tri-diagonal matrix. 

If it happens that a vector a,, ic n, is zero, then the process is continued by i n t w  
ducing a new arbitrary vector and iterating until the space is spanned. This leads to 
a factorization of the full n-dimensional space S" into partitions of dimension m,, 
ma, . . . , m,: 

S" = s m 1 + s m 1 + .  a .  + S m K  

with 
n = ml+m2+ . . .+mK. (3) 

If V is the matrix whose columns are the vectors v,, then the matrix 

c = v-144 v (4) 

now takes on block diagonal form, the submatrices arising from the spaces Pi, 
Sma, . . . , Sm.. This transformation of A preserves the eigenvalues, and ifb,, A, are the 
ith eigenvector and eigenvalue of the matrix C, then Vb, is the eigenvector of A cor- 
responding to eigenvalue A,. 

However A need not be a matrix. It can be an abstract operator and the vectors 
can be kets expressed as a sum of Slater determinants. To form Alu,) we use the 
rules for operating with A on the ket [ u,) instead of ordinary matrix multiplication. 
This process is no better than conventional methods if the full n operations are needed 
to find the eigenstates of A. In the shell model context where A is the hamiltonian, 
this is avoided because the numerically largest eigenvalues converge rapidly and 100 
iterations are usually more than adequate. 

In the context of projection, the situation is even better. It is not necessary to iterate 
until convergence has occurred because the full space always factorizes into very small 
subspaces. Each subspace contains at most one eigenvector corresponding to each 
of the different eigenvalues of the operator. For example the eigenstates of Ja and Ta 
are highly degenerate leading to a reduction of the full space into partitions as in 
equation (2). The dimension of the first partition Sml is equal to the number of eigen- 
states of J2 or T2 in the intrinsic state Iul) and is very small, typically of order 10. 
In principle, the eigenvalues and eigenvectors are produced exactly after m1 - 1 
iterations as the space SI is linearly independent of all the remaining subspaces. 
The method therefore produces projected eigenstates rather than simply matrix ele- 
ments as in most projection methods, and energies, transition rates etc can then be 
calculated in a straightforward manner using standard shell model techniques. 

To illustrate this point further, consider an axial Hartree-Fock solution 1s) 
obtained in the 2s-ld shell. We may write 

101 ) = 2 aJ1J, ) 
J 

where the state IJ, U,) is the single state of angular momentum J contained in /vi), 
and is one out of perhaps several thousand states of angular momentum J needed to 
span the complete space Sn in the 2s-ld shell. But these states IJ, a,), one for each 
J, span the subspace Sml. Operating on the vector Iu,) with J2 gives a different 
linear combination of the same basis states IJ, U,), and so J2(ul) is another vector 
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in PI. Thus the first m, - 1 iterations only produce vectors in the subspace Sml of 
Sn. By halting the Lanczos process when the basis Sm1 is exhausted, we obtain all the 
eigenstates contained in the intrinsic state and no others. 

The terminating vector is never exactly zero as rounding errors in the calculation 
remove the exact independence of the space Sml. These small inaccuracies, if ignored, 
would generate components of the other subspaces and finally span the whole space. 
The projection process would then generate all possible eigenstates out of these round- 
off errors. For this reason the projection procedure is terminated if a state of very 
low normalization is produced. Fortunately these errors do not seriously affect the 
results due to the few iterations normally required. Indeed the high degree of numerical 
stability of the Lanczos process means that eigenstates of J2 present as very small 
proportions of the intrinsic state can be projected successfully. 

The method has been used for angular momentum and isospin projection from 
Hartree-Fock-Bogoliubov intrinsic states in a number of 2s-ld shell nuclei (Mac- 
Donald et a1 1973). Here we illustrate the power of the method by presenting some 
results of calculations for the nucleus 22Ne. The intrinsic state is not restricted to have 
the symmetries normally imposed on such states, and all bands with K = 0, 1,2, . . , , 10 
are represented. Further details of this solution are given by Morrison (1973). In 

Table 1. Projection data for the nucleus aaNe. The energies E are given for states 
of angular momentum J projected from the K = 0, 1 and 2 bands. All states have 
T = 1 and the percentage of each state in its K band is given in the row marked %. 

J 0 1 2 3 4 5 

E -34.18 -29.34 -33.20 -28.62 -31.32 -26.88 
K = O  

% 41.0 0.06 38.0 0.05 16-0 0.02 

E -29.29 -31.29 -30.40 -29.10 -27.64 

% 0.5 48-0 32.0 5 *O 11.3 
K=l 

E 
K = 2  

% 

-33.27 -30.39 -31.38 -27.55 

70.0 2.5 22.0 0.46 

J 6 7 8 9 10 

E -28.32 -23.17 -23.53 -19.18 -18.35 
K = O  

% 4.0 10-3 0.5 10-3 0.02 
~~~ ~~ 

E -26.71 -24.08 -23.09 -19.52 -18.58 

% 0.8 2.0 0.11 0.14 0,006 
K =  1 

E -28.32 -24.00 

% 5.1 0.05 
K = 2  
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practice, all other projection methods rely heavily on symmetries in the intrinsic 
state. This method requires no symmetries. The HFB state is expressed as a sum of 
Slater determinants and all those with the same K are selected. Angular momentum 
and isospin projection are then performed to give the desired state and the energies 
calculated. 
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Figure 1. Projected HFB spectra for the nucleus aaNe. Spectra (a), (b) and (c) 
arise from the K = 0, 1 and 2 bands of the intrinsic state while (d)  is the super- 
position of these and ( e )  is the shell model spectrum. 

The results are tabulated in table 1 and the excitation energies of the low-lying 
states are compared in figure 1 with the exact shell model results of Halbert et al(l971). 
Of particular interest is the accurate determinations of the energy of the J = 1 state 
not obtainable from self-consistent calculations using any symmetries in the intrinsic 
state. Also from the percentage overlap figures we see that the process is accurate 
even for states present as very low proportions of the intrinsic wavefunction. 

Projection using the Lanczos method is therefore accurate and easily applicable 
to situations where the intrinsic state has no special symmetries. The restriction in 
applicability of the method is to those nuclei where the Slater determinant basis is not 
too large to handle which at present limits calculations to one or two major shells in 
the harmonic oscillator basis. 

We thank Drs N MacDonald and B Cole for help and advice. One of us (JM) wishes 
to  thank the SRC for financial support. 
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